organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-2-[(2-Hydroxy-1-naphthyl)methyleneamino1benzonitrile

Jian-Cheng Zhou,* Chuan-Ming Zhang, Nai-Xu Li and **Zheng-Yun Zhang**

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: jczhou@seu.edu.cn

Received 4 June 2009; accepted 20 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.159; data-to-parameter ratio = 14.2.

The title compound, C₁₈H₁₂N₂O, crystallizes in a phenolimine tautomeric form with a Z conformation for the imine functionality. The dihedral angle between the aromatic rings is 8.98 (9)°. A strong intramolecular O-H···N hydrogen-bond interaction between the hydroxyl group and imine N atom occurs.

Related literature

For general properties of Schiff base compounds, see: Weber et al. (2007); Chen et al. (2008). For related structures, see: Elmali et al. (2001); Yüce et al. (2006); Petek et al. (2007).

Experimental

Crystal data $C_{18}H_{12}N_2O$

 $M_r = 272.30$

Monoclinic, $P2_1/c$	Z = 4
a = 13.4640 (13) Å	Mo Ka radiation
b = 7.4450 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.4090 (11) Å	T = 293 K
$\beta = 116.660 \ (6)^{\circ}$	$0.20 \times 0.20 \times 0.20$ mm
V = 1380.4 (2) Å ³	
Data collection	
Rigaku SCXmini diffractometer	12133 measured reflections
Absorption correction: multi-scan	2706 independent reflections
(CrystalClear; Rigaku, 2005)	1803 reflections with $I > 2\sigma(I)$
T = 0.073 T = 0.070	$R_{\rm c} = 0.056$

 $R[F^2 > 2\sigma(F^2)] = 0.066$ wR(F²) = 0.159 190 parameters H-atom parameters constrained S = 1.10 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min}$ = -0.18 e Å⁻³ 2706 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots N1$	0.82	1.82	2.551 (2)	147

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2232).

References

- Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.
- Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485-486.
- Petek, H., Albayrak, Ç., Ağar, E., Ískeleli, N. O. & Şenel, İ. (2007). Acta Cryst. E63, 0810-0812.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.
- Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, 0389-0393.

supplementary materials

Acta Cryst. (2009). E65, o1700 [doi:10.1107/S1600536809023708]

(Z)-2-[(2-Hydroxy-1-naphthyl)methyleneamino]benzonitrile

J.-C. Zhou, C.-M. Zhang, N.-X. Li and Z.-Y. Zhang

Comment

Schiff base compounds have received considerable attention for many years because these compounds play an important role in coordination chemistry related to magnetism (Weber *et al.*, 2007) and catalysis (Chen *et al.*, 2008).Our group is interested in the synthesis and preparation of Schiff bases. Here, we report the synthesis and crystal structure of the title compound.

Figure 1 shows an *ORTEP* plot of the title compound. The molecule adopts the phenol–imine tautomeric form with a strong intramolecular O—H···N hydrogen bond. The C11N1 and C2—O1 bond lengths [1.296 (3) and 1.324 (3) Å, respectively] are comparable to corresponding values observed in a similar phenol–imine tautomeric structures (*e.g.* Petek *et al.*, 2007), while different geometry is observed in the case of zwitterionic molecules (Elmali *et al.*, 2001; Yüce *et al.*, 2006). Phenyl and naphthalyl rings, *A* (C12···C17) and *B* (C1···C10), are, of course, planar, and the dihedral angle between them is 8.98 (9)°. The molecule displays a *trans* configuration about the central CN imine bond. Molecules are packed in the crystal at van der Waals distances.

Experimental

2-Aminobenzonitrile (0.59 g, 5 mmol) and 2-hydroxynaphthalene-1-carbaldehyde (0.861 g, 5 mmol) were dissolved in ethanol (25 ml). The resulting mixture was refluxed for 5 h and cooled to room temperature. The solid product was collected by filtration. Crystals suitable for X-ray diffraction studies were obtained on slow evaporation at room temperature.

Refinement

The H atoms were placed geometrically and treated as riding atoms with O—H = 0.82 Å and C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(Carrier C)$ and $U_{iso}(H1A) = 1.5U_{eq}(O1)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

(Z)-2-[(2-Hydroxy-1-naphthyl)methyleneamino]benzonitrile

Crystal data C₁₈H₁₂N₂O

 $F_{000} = 568$

$M_r = 272.30$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 13.4640 (13) Å
<i>b</i> = 7.4450 (6) Å
c = 15.4090 (11) Å
$\beta = 116.660 \ (6)^{\circ}$
$V = 1380.4 (2) \text{ Å}^3$
Z = 4

Data collection

Rigaku SCXmini diffractometer	2706 independent reflections
Radiation source: fine-focus sealed tube	1803 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.056$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.973, T_{\max} = 0.979$	$l = -18 \rightarrow 18$
12133 measured reflections	

 $D_{\rm x} = 1.310 {\rm ~Mg~m}^{-3}$

 $\theta = 2.7 - 27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

Block, pale yellow $0.20 \times 0.20 \times 0.20$ mm

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2198 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0672P)^2 + 0.1372P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
2706 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
190 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.22890 (15)	0.5907 (3)	-0.07648 (12)	0.0792 (6)
H1A	0.1718	0.6436	-0.0852	0.119*
N1	0.07487 (14)	0.7038 (2)	-0.03712 (12)	0.0490 (5)
N2	0.0188 (2)	0.7966 (4)	-0.27347 (16)	0.0894 (8)
C1	0.24373 (17)	0.5812 (3)	0.08450 (16)	0.0465 (5)
C11	0.13677 (17)	0.6610 (3)	0.05282 (16)	0.0459 (5)

H11A	0.1105	0.6831	0.0983	0.055*
C12	-0.03185 (17)	0.7809 (3)	-0.07090 (15)	0.0439 (5)
C13	-0.08320 (18)	0.8360 (3)	-0.16755 (16)	0.0500 (6)
C10	0.30954 (17)	0.5267 (3)	0.18411 (16)	0.0477 (6)
C6	0.4729 (2)	0.3710 (3)	0.3064 (2)	0.0674 (7)
H6A	0.5381	0.3068	0.3228	0.081*
C5	0.41020 (19)	0.4302 (3)	0.21022 (18)	0.0550 (6)
C9	0.2793 (2)	0.5638 (3)	0.25909 (17)	0.0582 (6)
H9A	0.2150	0.6290	0.2451	0.070*
C2	0.2839 (2)	0.5440 (3)	0.01600 (18)	0.0569 (6)
C17	-0.08801 (19)	0.8058 (3)	-0.01468 (16)	0.0528 (6)
H17A	-0.0552	0.7709	0.0502	0.063*
C16	-0.1922 (2)	0.8823 (3)	-0.05539 (18)	0.0579 (6)
H16A	-0.2292	0.8983	-0.0175	0.069*
C14	-0.1883 (2)	0.9135 (3)	-0.20763 (18)	0.0596 (7)
H14A	-0.2216	0.9502	-0.2722	0.072*
C15	-0.2426 (2)	0.9355 (3)	-0.15123 (19)	0.0605 (7)
H15A	-0.3133	0.9862	-0.1776	0.073*
C4	0.4449 (2)	0.3949 (3)	0.1372 (2)	0.0664 (7)
H4A	0.5105	0.3316	0.1537	0.080*
C3	0.3859 (2)	0.4500 (4)	0.0453 (2)	0.0684 (8)
H3A	0.4121	0.4264	-0.0001	0.082*
C18	-0.0262 (2)	0.8130 (4)	-0.22658 (17)	0.0624 (7)
C8	0.3432 (2)	0.5053 (4)	0.35194 (19)	0.0716 (8)
H8A	0.3218	0.5322	0.4001	0.086*
C7	0.4394 (2)	0.4064 (4)	0.3755 (2)	0.0749 (8)
H7A	0.4808	0.3647	0.4386	0.090*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0708 (12)	0.1177 (17)	0.0570 (11)	0.0071 (11)	0.0359 (10)	-0.0072 (11)
N1	0.0484 (11)	0.0551 (12)	0.0439 (11)	-0.0048 (9)	0.0211 (9)	-0.0043 (9)
N2	0.0851 (17)	0.134 (2)	0.0598 (15)	0.0022 (16)	0.0421 (14)	0.0019 (14)
C1	0.0461 (12)	0.0447 (12)	0.0530 (14)	-0.0078 (10)	0.0259 (11)	-0.0084 (10)
C11	0.0498 (13)	0.0447 (12)	0.0473 (13)	-0.0059 (10)	0.0256 (11)	-0.0057 (10)
C12	0.0428 (12)	0.0450 (12)	0.0449 (12)	-0.0070 (10)	0.0205 (10)	-0.0072 (10)
C13	0.0498 (13)	0.0542 (14)	0.0475 (13)	-0.0075 (11)	0.0232 (11)	-0.0025 (11)
C10	0.0461 (12)	0.0406 (12)	0.0559 (14)	-0.0069 (10)	0.0224 (11)	-0.0025 (10)
C6	0.0505 (14)	0.0529 (15)	0.083 (2)	0.0003 (12)	0.0163 (15)	0.0074 (14)
C5	0.0471 (13)	0.0417 (12)	0.0716 (17)	-0.0036 (11)	0.0227 (13)	-0.0049 (12)
С9	0.0552 (14)	0.0652 (16)	0.0542 (15)	0.0035 (12)	0.0244 (12)	0.0035 (12)
C2	0.0525 (14)	0.0638 (16)	0.0570 (15)	-0.0058 (12)	0.0269 (12)	-0.0093 (12)
C17	0.0563 (14)	0.0571 (15)	0.0495 (13)	-0.0069 (12)	0.0278 (11)	-0.0025 (11)
C16	0.0577 (15)	0.0566 (15)	0.0701 (17)	-0.0052 (12)	0.0383 (13)	-0.0092 (13)
C14	0.0609 (15)	0.0595 (15)	0.0537 (15)	-0.0002 (12)	0.0214 (13)	0.0031 (12)
C15	0.0502 (14)	0.0540 (15)	0.0726 (18)	0.0010 (11)	0.0233 (13)	-0.0023 (13)
C4	0.0489 (14)	0.0572 (16)	0.092 (2)	0.0015 (12)	0.0304 (15)	-0.0130 (14)

supplementary materials

C3 C18 C8 C7	0.0612 (16) 0.0610 (15) 0.0692 (17) 0.0678 (18)	0.0731 (19) 0.0807 (19) 0.085 (2) 0.0729 (19)	0.084 (2) 0.0448 (14) 0.0578 (16) 0.0686 (18)	-0.0025 (14) -0.0019 (14) 0.0000 (16) 0.0019 (14)	0.0443 (15) 0.0231 (12) 0.0261 (14) 0.0169 (15)	-0.0200 (15) 0.0029 (13) 0.0081 (14) 0.0185 (15)
Geometric paran	neters (Å, °)					
01 62		1 224 (2)	05	C4	1.42	2 (2)
01-02		1.324 (3)	C3—	C4	1.423 (3)	
NI CII		0.8200	C9—		0.0200	
NI-CI2		1.290(3) 1.412(3)	C9—	C3	1 422 (2)	
N1-C12 N2 C18		1.412(3)	C17	C16	1.42	7 (3)
$N_2 = C_{10}$		1.139(3)	C17=	-C10 H17A	1.57	7 (3) 00
C1 - C2		1.412(3)	C1/-	-1117A	0.93	8 (3)
C1 = C10		1.420(3)	C16-		0.03	00
C11H11A		0.9300	C10-		0.93	00 4 (3)
C12-C17		1 394 (3)	C14-		0.93	4 (<i>3</i>)
C12-C13		1.303 (3)	C14-		0.93	00
C12 - C13		1.390 (3)	C4-	C3	1 34	0.(4)
C13 - C18		1.390(3)	C4—	H4A	0.93	00
C10-C9		1.139(3) 1 414(3)	C3—	НЗА	0.93	00
C10-C5		1 423 (3)	C8—	C7	1 390 (4)	
C6-C7		1 355 (4)	C8—	H8A	0.9300	
C6—C5		1.408 (3)	C7—	H7A	0.93	00
С6—Н6А		0.9300				
C2—O1—H1A		109.5	01—	-C2C3	117.	6 (2)
C11—N1—C12		123.63 (18)	C1—	C2—C3	119.	9 (2)
C2—C1—C11		119.5 (2)	C16–	C17C12	119.	8 (2)
C2—C1—C10		118.8 (2)	C16–	—С17—Н17А	120.	1
C11—C1—C10		121.64 (19)	C12-	C17H17A	120.	1
N1-C11-C1		122.3 (2)	C15-	C16C17	121.	3 (2)
N1-C11-H11A		118.8	C15-	C16H16A	119.	4
C1-C11-H11A		118.8	C17-	C16H16A	119.	4
C17—C12—C13		118.5 (2)	C15-	C14C13	119.	6 (2)
C17—C12—N1		124.8 (2)	C15-	C14H14A	120.	2
C13—C12—N1		116.66 (19)	C13–	C14H14A	120.	2
C14—C13—C12		121.0 (2)	C14–	C15C16	119.	8 (2)
C14—C13—C18		119.6 (2)	C14-	C15H15A	120.	1
C12—C13—C18		119.4 (2)	C16–	C16—C15—H15A 120.		1
C9—C10—C5		117.0 (2)	С3—	C3—C4—C5 122.0 (2		0 (2)
C9—C10—C1		123.3 (2)	C3—	C4—H4A	119.	0
C5—C10—C1		119.6 (2)	C5—	C4—H4A	119.0	
C7—C6—C5		120.9 (3)	C4—	-C3C2 121.0 (2)		0 (2)
С7—С6—Н6А		119.6	C4—	С4—С3—НЗА 119.5		5
С5—С6—Н6А		119.6	C2—	С2—С3—НЗА 119.5		5
C6—C5—C4		121.4 (2)	N2—	N2—C18—C13 179.3 (3)		3 (3)
C6—C5—C10		120.0 (2)	С9—	C8—C7	121.1 (3)	
C4—C5—C10		118.6 (2)	С9—	C8—H8A	119.	4
C8—C9—C10		121.1 (2)	С7—	C8—H8A	119.	4

C8—C9—H9A	119.5	C6—C7—C8		119.8 (3)
C10—C9—H9A	119.5	C6—C7—H7A		120.1
O1—C2—C1	122.4 (2)	C8—C7—H7A		120.1
Hydrogen-bond geometry (Å, °)				
D—H··· A	<i>D</i> —Н	H…A	<i>D</i> … <i>A</i>	<i>D</i> —Н… <i>А</i>
O1—H1A···N1	0.82	1.82	2.551 (2)	147

